Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Hyg Environ Health ; 248: 114108, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36709743

RESUMO

Aquatic environments play important roles in the dissemination of clinically-relevant antibiotic resistance genes (ARGs) and pathogens. Limited knowledge exists about the prevalence of clinically-relevant acquired resistance genes in the marine environment, especially in Norway. The aim of the current study was to investigate the presence of and characterize self-transmissible resistance plasmids from Bergen harbor seawater, with exogenous-plasmid capture, using a green fluorescent protein (GFP)-tagged Escherichia coli strain as a recipient. We obtained transconjugants resistant against ampicillin and cefotaxime from four of the 13 samples processed. Nine transconjugants, selected on the basis of antibiotic sensitivity patterns, were sequenced, using Illumina MiSeq and Oxford Nanopore MinION platforms. Ten different plasmids (ranging from 35 kb to 136 kb) belonging to incompatibility groups IncFII/IncFIB/Col156, IncFII, IncI1 and IncB/O/K/Z were detected among these transconjugants. Plasmid p1A1 (IncFII/IncFIB/Col156, 135.7 kb) carried resistance genes blaTEM-1, dfrA17, sul1, sul2, tet(A), mph(A), aadA5, aph(3″)-Ib and aph(6)-Id, conferring resistance against six different classes of antibiotics. Plasmid p1A4 carried blaCTX-M-55, lnu(F), aadA17 and aac(3)-IId. Cephalosporinase blaCMY-2 was detected on plasmids captured from an area impacted by wastewater from a local marine aquarium. Along with ARGs, some plasmids also carried virulence factors, such as enterotoxins, adhesion factors and siderophores. Our study demonstrates the presence of clinically-important multidrug-resistance conjugative plasmids in seawater from Bergen harbor, which have the potential to be transferred to human microbiota. The results highlight the need for surveillance of antibiotic resistance in the environment, as suggested by the World Health Organization, especially in low prevalence settings like Norway.


Assuntos
Infecções por Escherichia coli , Humanos , Infecções por Escherichia coli/epidemiologia , Virulência , Escherichia coli/genética , Antibacterianos/farmacologia , Plasmídeos/genética , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla/genética
2.
J Glob Antimicrob Resist ; 32: 152-154, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36356852

RESUMO

OBJECTIVES: The aim of the study was to understand the genetic basis of resistance of five ß-lactam resistant Vibrio anguillarum isolates obtained from the gut content of Atlantic mackerel (Scomber scomberus), using whole genome sequencing and to characterize a novel ß-lactamase (VAN-1) from these isolates. METHOD: Antibiotic sensitivity pattern was determined using Sensititre™ plates and whole genome sequencing was carried out using Illumina MiSeq-based sequencing. The blaVAN-1 gene was synthesized and expressed in Escherichia coli Top10 cells. RESULTS: Five isolates obtained (out of 73) from the gut content of Atlantic mackerel were identified as Vibrio anguillarum. Whole genome assemblies ranged from 3.894 to 3.906 million bases in length with an average of 50 contigs. A novel ß-lactamase blaVAN-1, sharing 77.7% nucleotide identity with a known mobile ß-lactamase from Vibrio species was detected. The blaVAN-1 gene in these isolates is flanked by a truncated IS5 family transposase on one end and a hypothetical protein and outer membrane protein followed by another IS5 family transposase on the other end, suggesting its potential for mobility. The blaVAN-1 gene was absent in V. anguillarum type strain (ATCC 14181) and V. anguillarum isolates from bivalves and sea water in Norway. VAN-1 conferred ampicillin resistance when expressed in E. coli, thus confirming the functionality of this gene. CONCLUSIONS: Our study highlights the importance of the marine environment as a reservoir of new antibiotic resistance genes. Our results suggest that migratory fish may transport novel antibiotic resistance determinants over long distances.


Assuntos
Fatores R , beta-Lactamases , Animais , beta-Lactamases/genética , Escherichia coli/genética , Peixes/genética , Antibacterianos/farmacologia , Transposases/genética
3.
Microbiol Spectr ; 10(6): e0203722, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36374025

RESUMO

Shewanella species have been identified as progenitors of several clinically important antibiotic resistance genes. The aim of our study was to analyze Shewanella baltica strains isolated from the gut contents of wild Atlantic mackerel (Scomber scombrus) for the presence of both known and novel variants of antibiotic resistance genes (ARGs), using Illumina-based whole-genome sequencing (WGS). Thirty-three S. baltica strains were isolated from Atlantic mackerel collected in the northern North Sea. WGS revealed the presence of several new variants of class C and class D beta-lactamases. Nearly 42% (14/33) of the strains carried the mobile colistin resistance gene mcr-4.3. To understand the genetic context of mcr-4.3, we determined the complete genome sequence of strain 11FHM2, using a combination of Oxford Nanopore- and Illumina-based sequencing. The complete genome sequence is 5,406,724 bp long, with one contig representing a chromosome of 5,068,880 bp and three contigs representing novel plasmids (pSBP1, 194,145 bp; pSBP2_mcr4, 86,727 bp; and pSBP3, 56,972 bp). Plasmid pSBP2_mcr4 contains the mobile colistin resistance gene mcr-4.3, as well as the mercury resistance operon merRPAT. Plasmid pSBP1 carries genes encoding resistance against copper, zinc, chromium, and arsenic. Plasmid pSBP3 does not carry any antibiotic or heavy metal resistance genes. Analysis of the flanking region of mcr-4.3 suggests that a phage integrase may be involved in the mobilization of mcr-4.3 in Shewanella spp. Our results provide insights into the mobile mcr-4.3 present in Shewanella spp. and highlight the importance of the marine environment in the emergence and dissemination of clinically important resistance genes. IMPORTANCE We identified two new plasmids in Shewanella baltica isolated from wild Atlantic mackerel (Scomber scombrus) collected from the northern North Sea, one plasmid carrying the mcr-4.3 gene for colistin resistance and the operon merRPAT for mercury resistance and the other carrying multiple heavy metal resistance genes. The marine environment has been recognized as a source of new resistance genes that are found in human pathogens. Selection pressure from heavy metals is seen in the marine environment, especially associated with human activities, such as waste discharge, mining, and in aquaculture settings. This would help maintain and disseminate these plasmids in the environment. Our study provides insights into the mobilization of colistin resistance genes in Shewanella spp. and highlights the importance of the marine environment in the emergence and dissemination of clinically important antibiotic resistance genes.


Assuntos
Proteínas de Escherichia coli , Mercúrio , Shewanella , Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Mercúrio/farmacologia , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Shewanella/genética
4.
Microorganisms ; 8(8)2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784594

RESUMO

To our best knowledge this is the first study characterizing fish pathogens isolated from marine plastics from the West coast of Norway for their potential for pathogenicity using whole genome sequencing. Marine plastic polymers identified as polyethylene, polyethylene/ethylene vinyl acetate copolymer and polypropylene, yielded a total of 37 bacterial isolates dominated by Pseudomonas spp. (70%). Six isolates representing either fish pathogens or opportunistic human pathogens were selected for whole genome sequencing (WGS). These included four isolates belonging to Aeromonas spp., one Acinetobacter beijerinckii isolate and one Morganella morganii isolate. Three Aeromonas salmonicida isolates were potentially virulent and carried virulence factors involved in attachment, type II and type VI secretion systems as well as toxins such as aerA/act, ahh1, ast, hlyA, rtxA and toxA. A. salmonicida and Acinetobacter beijerinckii carried new variants of antibiotic resistance genes (ARGs) such as ß-lactamases and chloramphenicol acetyltransferase (catB), whereas Morganella morganii carried several clinically relevant ARGs. Our study shows that marine plastics carry not only potentially virulent fish pathogens but also multidrug resistant opportunistic human pathogens like M. morganii and may serve as vectors for transport of these pathogens in the marine environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...